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A survey is presented of several extrema principles of 
energy dissipation as applied to problems in fluid mechanics. An 
exact equation is derived for the dissipation function of a homo- 
geneous, isotropic, Newtonian fluid, with terms associated with 
irreversible compression or expansion, wave radiation, and the 
square of the vonicity. By using entropy extrema principles, 
simple flows such as the incompressible channel flow and the 
cylindrical vortex are identified as minimal dissipative distribu- 
tions. The principal notions of stability of parallel shear flows 
appear to be associated with a maximum dissipation condition. 
These different conditions a .  consistent with Prigogine's clas- 
sification of thermodynamic states into categories of equilib- 
rium, linear non-equilibrium, and non-linear non-equilibrium 
thermodynamics; vortices and acoustic waves appear as exam- 
ples of dissipative structures. The measurements of a typical 
periodic shear flow, the rectangular wall jet, show that direct 
measurements of the dissipative terms are possible. 
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a0 speed of sound in undisturbed fluid 

A,B,C integration constants 

djk deformation rate tensor 

h parallel channel height 

I , .  12. I, dissipation integrals (also IT, Idiv) 

k coefficient of heat conduction 

K vortex strength 

L length of vortex 

Mj 
Mach number in the j direction = uj/ao 

P pressure 

r radial distance 

ro vortex core radius 

t timc 

u streamwise velocity component 

ii, uj velocity vectors 

UO tangential velocity component 
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M A .  

parallel channel width 

sfreamwise direction 

position vector 

direction normal to parallel channel wall 

Kroneker delta 

viscous dissipation function 

incompressible dissipation function 

radiative component of dissipation function 

X second coefficient of viscosity 

ir viscosity 

v kinematic viscosity 

P density 

6% ajk vomcity 

(-1 time average of quantity in parentheses 

( )' time dependent fluctuation of quantity 
in parentheses 

The successful application of the "principle of least 
action" to problems in the fields of particle dynamics and quan- 
tum mechanics has i n s p i d  several efforts to extend the method 
to other areas, including thermodynamics and hydrodynamics. 
The relevance of variational principles to these areas has been 
studied relatively recently, and hence there is significantly less 
acceptance of any general framework of exncma principles to 
them. Several writers [lJ] conclude that variational principles 
are not applicable to the field of thermodynamics. Onsager 
examined coupled ineversible processes near equilibrium and 
derived a statement of minimum entropy production for these 
conditions [3]. Zieglcr [4] proposes that rates of entropy pro- 
duction and energy dissipation arc maximized for processes far 
from equilibrium, while Biot [S] supports Onsager's conjecture 
of minimum dissipation rate for near-equilibrium processes. 
Tadrnor [61 has also defmed a minimum entropy principle in the 
context of stable numerical solutions of the gas dynamics 
equations. 

In the field of hydrodynamics, Helmholtz [7] proved that 
flow with negligible inertia is characterized by a minimum of 



viscous dissipation. Herivel and Lin [I] have derived imta- 
tional and rotational forms respectively of the conservation 
equations from a variational principle. as rclatcd by Yourgrau 
and Mandelstam [I]. For thermal convection and turbulent 
flow in channels, Malkus [8,9] proposed a theory based on 
arguments that the smallest turbulent scales are marginally sta- 
ble. and that the mean and turbulent characteristics of the flow 
are determined by the condition that the energy dissipation is 
maximized. Objections to Malkus's theory have been raised in 
several areas, among them that e x a m  of the dissipation func- 
tion are not generally compatible with conservation laws, and of 
vagueness in the application of both examizing conditions and 
stability criteria. Reynolds and Tiederman [lo] found poor 
agreement between a eddy viscosity simulation of turbulent 
channel flow and Malkus's prediction of the association of 
maximum dissipation rate with neutral stability of the mean 
flow. Nihoul [I  11 reexamined Malkus's theory with rcgard to 
Liapounov stability and described an associated principle of 
minimum Reynolds number. The problem of convective heat 
transfer, also considered by Palnidge [I21 and Busse 1131, can 
be characterized by maximum heat transfer in some 
circumstances. 

Prigogine [14] has classified entropy production theo- 
rems according to a generalized sequence of stable thmnody- 
namic states. Thermodynamic equilibrium, characterized by the 
absence of gradients of state or kinematic variables, is in a state 
of maximum entropy and zero entropy production. Linear 
nonequilibrium processes, studied by Onsager [3], are associ- 
ated with minimum entropy production. The linear description 
applies if the generalized thermodynamic fluxes (such as heat 
flow or fluid deformation) are linearly rcIated to the generalized 
thermodynamic forces (such as temperature gradient or viscous 
stress). Many near-equilibrium processes are accurately charac- 
terized as linear. Entropy production is not necessarily mini- 
mized for nonquilibrium processes which arc nonlinear or far 
from equilibrium. Nonlinearity is generally associated with the 
generation of chaotic states from initially determinate conditions, 
such as the transition of laminar flow to turbulence. Prigogine 
[15,16] has demonstrated that nonlinearity and processes which 
are far from equilibrium may give rise to global organization 
from an initially random field, and associates such processes 
with the evolution of dissipative structures. Prigogine describes 
several general characteristics of nonlinear systems. such as limit 
cycles and period-doubling Feigenbaum sequences. which are 
familiar aspects of high speed and transitional flows. Lugt [I71 
has commented on the evolution of discrete vortices in shear 
flows as an example of these dissipative structures. 

JT . D i ss i  aho on . functions for a Newt- 

The present discussion examines the dissipation function 
for a homogeneous Newtonian fluid, which Ziegler [4] writes 
as: 

@=My d , + 2 p d  d  P h 
where: 

Hinzt (191 and Tennekes and Lumley [20] obtain similar 
decompositions of the time-averaged dissipation function. which 
are valid for homogeneous turbulence. The last term in (3) 
appears in several acroacoustic wave equations. such as that 
derived by Phillips [21]. Home and Karamcheti [22] have 
derived a different formulation of the dissipation function by 
t o m b i g  the terms of the equation: 

where: 

a u k  a u k  a ,  F = p  x + p ~ l T + - - -  a x ,  a x ,  (6 

M = F = 0 for a fluid fire of sources of mass or momentum. By 
expanding the tams of equation (4). we obtain: 

where: 



By cancelling terms as shown. the remaining terms in equation rate. For parallel channel flow, the mass and momentum qua-  
(4) appear as follows: tions d u c t  to: 

By substituting equation (7) into equation (3). the 
desired form is obtained: 

This exact expression accounts for three important 
mechanisms of energy dissipation in real flows: (1) irreversible 
expansion or compression, (2) generation and radiation of sound 
or shock waves. and (3) generation of vorticity. Since the mass 
and momentum conservation equations have been used in the 
derivation of (8). extrema of this function will satisfy those 
equations. Formally, functions of the conservation equations 
have been adjoined to the conventional expression for the dissi- 
pation function similar to the manner of imposing functional 
constraints in the solution of problems of geodesics. The radia- 
tive terms can be further manipulated to yield a convective wave 
operator acting on the density field: 

where Mk is the Mach number in the k direction. The first term 
occurs in Lighthill's 1241 acoustic stress tensor, while the con- 
vective wave operator for the density is identical to the convec- 
tive wave operator for acoustical disturbances in shear flow. 
The presence of non-dissipative outward radiating acoustic 
waves from an aerodynamic source region requires dissipation 
of energy from the source region. 

For incompressible, uniformdensity flows, the expres- 
sion (8) for the dissipation function reduces to: 

This expression may be used to examine low-speed flows for 
velocity disaibutions which result in extrema of the dissipation 

For this case, the term in the dissipation function associ- 
ated with the Laplacian of the pressure is zero, as is seen by 
taking the x-derivative of the momentum quation and by using 
the continuity equation: 

0 0 .  

Therefore. 

The volume integral of the dissipation function is now 
given by: 

where x and w are the length and width, respectively, of the 
channel. Tht flow rate through the channel is given by: 

Possible extrcma of the integral (10). subject to constant 
channel flow rate, are found as solutions of the Eule. Lagrange 
equation: 

Here. a is a Lagrange multiplier adjoining the integrand of the 
flow rate constraint to the extremizing function. For this exarn- 
ple. evaluation of the Euler-Lagrange equation yields the 
expression: 

Hence, an extremum of the dissipation is found for the linear- 
parabolic profile: 

This profile corresponds to a minimum of the dissipation func- 
tion, according to Legendre's test, since: 



In general, a potential analysis method for other configurations nen, 
would proceed by examizing the dissipation function subject to 
satisfaction of a consnaint or set of constraints such as an inte- A. I 

gral of the flow rate, momentum, or energy through a given - = 2 r - A + 2 u ,  3 " 
section. 1V, dr 

Another simple example is that of a steady cylindrical 
rotational flow, in which the tangential velocity and pressure art 
functions only of the radius from the origin. Hence: 

The radial pressure gradient is given by the radial momennun 
equation: 

The Laplacian of the pressure is written as: 

The vorticity is given by: 

1 d U 
in=vxu=-- ,,CUJ =I++ (12) 

We seek e x m  of the integral: 

where L is the length of the vortex. The first integral on the 
right side vanishes, since from quation (1 1): 

J;v2(p)rdr = [ t%(u3rdr =uf o 

and 

U&O) =u&-) = O  

for any realizable flow. Then: 

Extrema of this integral are obtained as solutions of the Euler- 
Lagrange equation: 

Z 
d u, du, -- a = 2 2 + 2 r - + 2 -  

dr[W,) r drz dr 
By substituting equations (16) and (17) into (15). we obtain: 

This is kognized as Eulds equation, with solutions: 

The same solutions result if the pressure term is retained. These 
two solutions represent respectively the core and the outer- 
potential region of a columnar vortex: 

Both solutions represent minimum dissipation conditions, as in 
the channel flow. Integrated conmbutions to the overall 
dissipation rate arc given in the following table: 

As can be seen. the net dissipation in the rotational core is zero, 
while the irrotational outer flow has a net positive dissipation 
due to the Laplacian of the pressure. The tangential acceleration 
is zero throughout the flow, except at the boundary at r,. A 
steady tangential smss is required at this location (as provided 
by a thin rotating cylinder. for example) to maintain a steady 
flow. The net dissipation in the outer region is identical to the 
torque power absorbed by the rotating cylinder, since the shear 
s a s s  at the cylinder wall is given by: 

The two example considered arc steady flows, since the 
Euler-Lagrange quations did not include time dependent varia- 
tions. The two examples also involve no convective accelera- 
tions, and therefore do not demonstrate an extension of the 
minimum dissipation principle beyond Helmholtz's original 
statement for flows with negligible inertial forces. For these 
flows, the minimum dissipation condition appears to be con- 
sistent with a linear, near-equilibrium process. It should be 
possible to extend the method to boundary layers and asym- 
metric flows whm convective accelerations are important. 



JV. DisSi~ation considerahons In u-v. tw- 
. . 
ik?s 

The application of extremum conditions of entropy pro- 
duction or dissipation rate to unsteady flows may be facilitated 
by considering the mean and fluctuating components of the dis- 
sipation function: 

We may use this expression to interpret the small and 
large disturbance motions in two-dimensional flow. A large 
number of parallel shear flows such as the boundary-layer, the 
free-shear-layer, and the wall-jet have been successfully ana- 
lyzed for stability to small disturbances via the Orr-Somrnerfield 
equation. The stability characteristics for these flows are found 
to be strongly associated with the mean velocity profile of the 
flow. For velocities which exceed a critical Reynolds number. 
small disturbances of the frequency corresponding to the maxi- 
mum amplification rate are pdic ted  to grow exponentially with 
downstream distance until nonlinear effects limit the growth. 
Within the small-disturbance region, the mean velocity profile 
remains unchanged, and the small disturbances take the form of 
convecting vortical motions. Experimental studies of various 
flows confirm that the frequencies predicted for maximum- 
vonical-disturbance growth rate correspond to the observed 
frequencies of unforced fluctuations. From equation (18). it 
appears that the maximum vonical-disturbance growth rate con- 
dition corresponds to a maximum dissipation condition, if the 
contribution from the pressure term is negligible and the contri- 
bution from the mean vorticity term is independent of distur- 
bance frequency. 

Figure 1 illustrates the periodic vortex motion of a two- 
dimensional wall jet flow. The wall jet develops from an 
initially parabolic profile rather than a self-similar profile, as is 
the case in the parallel shear flow. Woolley and Karamcheti [25] 
have shown that the stability characteristics of nonparallel shear 
flows are closely related to those of parallel shear flows. The 
short wall was associated with the generation of tones by the jet, 
which significantly reduced the small disturbance region by 
effectively forcing the initial jet region. however the observed 
tone frequencies were approximately the same as with the long- 
wall. silent jet. The conditions for this jet are: Urn = 13.85 
rnls, L/h = 7.5, where Urn = the maximum velocity of the 
parabolic exit profile, L = wall length, and h = nozzle width. 
Figure l(a) shows a phase-averaged Schlieren visualization 
record obtained by lightly heating the subsonic nozzle flow. 
Figure l(b) shows the phase-averaged velocity field, referenced 
to the convecting vortices. and Fig. l(c) depicts the 
corresponding vorticity field obtained with a central-differenced 
curl of the velocity field. The vorticity is normalized with 
respect to the maximum exit velocity and the nozzle width. The 
measurements were obtained from a single x-win velocity pmbe 
by sampling the probe output at regular phase intervals as 
determined by a fixed pressure-transducer in the wall [23]. 
These measurements were further processed to obtain estimates 
of the mean and fluctuating components of the dissipation field. 

Relative contributions to the dissipative structure of the 
wall jet were estimated by integrating the field variables in the 
cross-stream direction. We defme: 

The Laplacian of the pressure was computed from 
the divergence of the incompressible. viscous, 2-D momentum 
equation: 

In order to estimate the measurement error, the mean square of 
the divergence of the velocity was computed: 

Figure 2 shows the distributions of I1 , 12,  13. Idiv,  
and IT for the jet conditions described previously. The mea- 
surement error indicated by hiv is negligible only upstream of 
the wall trailing edge, where the pressure Laplacian term. I1 , is 
also negligible. The square of the mean vorticity, 12, is nearly 
constant in the small disturbance region: 0 < x/h .2.5, beyond 
which it gradually decreases. The mean square of fluctuating 
vorticity, b , is negligible in the initial region, then steadily 
increases in the large disturbance wall region: 2.5 < x/h < 7.5. 
Relative comparisons of the magnitudes of the pressure and 
voxticity fluctuation terms in the small disturbance region are not 
possible with these measurements, but could be made from a 
stability analysis of the flow. 

These measurements demonstrate a potential method of 
directly measuring dissipative terms in an unsteady flow. A 
direct extension of this method may be applied to experimentally 
determine a relationship between overall dissipation and variable 
parameters, such as forcing frequency. and to exp imentally 
search for dissipation extrema. 

An exact equation has been derived for the dissipation 
function of a homogeneous, isotropic. Newtonian fluid. with 
terms associated with irreversible compression or expansion, 
wave radiation, and the square of the vorticity. Simple flows 
such as the incompressible channel flow and the cylindrical 
vortex are identified as minimal dissipative distributions. The 
principal notions of stability of parallel shear flows appear to be 
consistent with maximum dissipation conditions on the growth 
of vomcal disturbances. These observations are consistent with 
Prigogine's [14,15] distinction between stable thermodynamic 
states or processes which are either linear and near equilibrium. 
or nonlinear and far from equilibrium. In this context. vortices 
and acoustic wave sources appear to be examples of dissipative 
structures. The measurements of a typical periodic shear flow. 
the rectangular wall jet, show that direct measurements of the 
dissipative terms arc possible. 

Further experimental and theoretical analyses are 
required to determine the global validity of extrema principles 
with regard to complex flows and to determine the applicability 
of time-averaged analyses. 
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Fig. 1 Phase averaged velocity field and flow visualization. 
a) Phase-averaged flow visualization; b) velocity vectors 
(relative to convecting vortices; and c) vorticity contours. 
Conditions: nozzle width, h = 0.508 cm; nozzle aspect 
ratio = 20; wall length, L = 3.81 cm; parabolic velocity 
profile at nozzle exit with maximum exit velocity, 
Uo = 13.85 mtsec; tone frequency, f = 600 Hz. 

Fig. 2 Distribution of integrated dissipation components. 
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